Optimal Segmentation of Random Processes - Signal Processing, IEEE Transactions on

نویسنده

  • Marc Lavielle
چکیده

Segmentation of a nonstationary process consists in assuming piecewise stationarity and in detecting the instants of change. We consider here that all the data is available in a same time and perform a global segmentation instead of a sequential procedure. We build a change process and define arbitrarily its prior distribution. That allows us to propose the MAP estimate as well as some minimum contrast estimate as a solution. One of the interests of the method is its ability to give the best solution, according to the resolution level required by the user, that is, to the prior distribution chosen. The method can address a wide class of parametric and nonparametric models. Simulations and applications to real data are proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation of Gabor-filtered textures using deterministic relaxation

A supervised texture segmentation scheme is proposed in this article. The texture features are extracted by filtering the given image using a filter bank consisting of a number of Gabor filters with different frequencies, resolutions, and orientations. The segmentation model consists of feature formation, partition, and competition processes. In the feature formation process, the texture featur...

متن کامل

Adaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform

In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...

متن کامل

Pixon-based image segmentation with Markov random fields

Image segmentation is an essential processing step for many image analysis applications. We propose a novel pixon-based adaptive scale method for image segmentation. The key idea of our approach is that a pixon-based image model is combined with a Markov random field (MRF) model under a Bayesian framework. We introduce a new pixon scheme that is more suitable for image segmentation than the "fu...

متن کامل

EM algorithm for image segmentation initialized by a tree structure scheme

In this correspondence, the objective is to segment vector images, which are modeled as multivariate finite mixtures. The underlying images are characterized by Markov random fields (MRFs), and the applied segmentation procedure is based on the expectation-maximization (EM) technique. We propose an initialization procedure that does not require any prior information and yet provides excellent i...

متن کامل

A robust automatic clustering scheme for image segmentation using wavelets

The optimal features with which to discriminate between regions and, thus, segment an image often differ depending on the nature of the image. Many real images are made up of both smooth and textured regions and are best segmented using different features in different areas. A scheme that automatically selects the optimal features for each pixel using wavelet analysis is proposed, leading to a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998